

# Lunar Orbital Neutron Measurements Current Knowledge and Future Prospects

David J. Lawrence

Johns Hopkins University Applied Physics Laboratory, Laurel,

MD, USA



# Measuring Planetary Hydrogen





- Planetary neutron spectroscopy used to measure hydrogen concentrations on planetary surfaces.
- Epithermal neutrons provide strong measure of hydrogen concentration.
- For omni-directional sensors, spatial resolution is ~1 − 1.5 times spacecraft altitude.



Lunar polar epithermal neutrons measured by the Lunar Prospector Neutron Spectrometer (*Feldman et al.*, 2001).

- Lunar Prospector (LP) epithermal neutrons
  - > Broad spatial resolution
- Spatial reconstruction of LP data
  - Result requires prior knowledge of PSRs
- Surface Hydrogen at Shackleton crater?
- Collimated neutron measurements
  - Small signal and large uncollimated background limit spatial resolution



Spatial reconstructions of LP epithermal neutron data (*Eke et al., 2009; Teodoro et al., 2010*).

- Lunar Prospector (LP) epithermal neutrons
  - > Broad spatial resolution
- Spatial reconstruction of LP data
  - Result requires prior knowledge of PSRs
- Surface Hydrogen at Shackleton crater?
- Collimated neutron measurements
  - Small signal and large uncollimated background limit spatial resolution





Miller et al. (2014)

- Lunar Prospector (LP) epithermal neutrons
  - > Broad spatial resolution
- Spatial reconstruction of LP data
  - Result requires prior knowledge of PSRs
- Surface Hydrogen at Shackleton crater?
- Collimated neutron measurements
  - Small signal and large uncollimated background limit spatial resolution



Collimated epithermal neutrons from the Lunar Exploration Neutron Detector (*Mitrofanov et al.,* 2011).

- Lunar Prospector (LP) epithermal neutrons
  - > Broad spatial resolution
- Spatial reconstruction of LP data
  - Result requires prior knowledge of PSRs
- Surface Hydrogen at Shackleton crater?
- Collimated neutron measurements
  - Small signal and large uncollimated background limit spatial resolution

# Low-Altitude (~10 km) Neutron Measurements





- Low-altitude data would obtain significantly improved measurements compared current "best measurements."
- Require six-months of data collection using one-module NS.
  - Challenging to field on CubeSat.
- Four-module sensor would acquire measurements in three months.
  - Easily accommodated on small sat (i.e., 12U-like spacecraft.)

#### **Detection Limits**



 High-precision measurements provide robust bulk and buriedhydrogen detection limits across the entire pole.

# Very-low-altitude Measurements (~5 km)



- Finish mission with few, very-low-altitude measurements.
- Four-module sensor can spatially resolve spatial heterogeniety within PSRs.
  - One-module or LP-like
     <sup>3</sup>He sensor cannot resolve on single pass.
- Use as benchmark for spatial deconvolution, and for "ground truth" for higher-order deconvolution.